儀器銷售部
電 話:010-62969867
傳 真:010-82782201
手 機:15510478722
服務專線:400 6601118
Email:shidaijiance@163.com
網址:www.beijingshidai.com.cn
超聲檢測技術對缺陷定性評定的主要方法
超聲檢測技術對缺陷定性評定的主要方法 |
||
一.波形判斷法(經驗法) |
||
目前應用最廣泛的是A掃描顯示型超聲脈沖反射式檢測儀。經過長期的超聲檢測實踐,許多超聲檢測人員對其大量接觸的材料、產品及制造工藝有充分的了解,并通過大量的解剖分析驗證,積累了豐富的經驗,在檢測時能通過A掃描顯示型超聲脈沖反射式探傷儀,根據示波屏上出現缺陷回波時的波形形狀,例如視頻顯示或射頻顯示,起波速度,回波前沿的陡峭程度及回波后沿下降的速度(下降斜率),波尖形狀,回波占寬以及移動探頭時缺陷回波的變化情況(波幅、位置、數量、形狀、動態包絡等),還可以根據觀察多次底波的次數,底波高度損失情況,再根據缺陷在被檢件中的位置,分布情況,缺陷的當量大小(與反射率有關),延伸情況,結合具體產品、材料的特點和制造工藝作出綜合判斷,評估出缺陷的種類和性質。有時還可以通過改變發射超聲波脈沖的頻率、改變聲束直徑大小(采取聚焦或采用不同直徑的探頭等)來觀察缺陷的回波變化特征,從而識別是材料中的冶金缺陷還是組織反射。 |
||
在這方面已經有不少經驗總結和資料報道,例如判斷鋼鍛件中的白點、夾雜物、殘余縮孔、粗晶、中心疏松、方框形偏析,以及焊縫中的氣孔、夾渣、未焊透、未熔合、裂紋等等。 |
||
必須指出,這種判斷方法在很大程度上依賴超聲檢測人員的經驗、技術水平和對特定產品、材料及制造工藝的充分了解,其局限性是很大的,難以推廣成為通用的評定方法。此外,作為A掃描顯示的缺陷回波所顯示的缺陷信息也極其有限,主要顯示的是波幅大小、位置和回波包絡形狀,而缺陷對超聲響應的相位、頻譜等重要信息則無法顯示出來,但是后兩者與缺陷性質和種類有著密切關系,這也正是目前廣大超聲檢測人員致力研究探索的問題。 |
||
下面舉出一部分常見缺陷的回波特征: |
||
(1)鋼鍛件中的粗晶與疏松--多以雜波、叢狀波形式或底波高度損失增大、底波反射次數減少等形式出現。 |
||
(2)棒材的中心裂紋--在沿圓周面作360°徑向縱波掃查時,由于裂紋的輻射方向性,其反射波幅有高低變化并有不同程度的游動,在沿軸向掃查時,反射波幅度和位置變化不大并顯示有一定的延伸長度。 |
||
(3)鍛件中的裂紋--由于裂紋型缺陷內含物多有氣體存在,與基體材料聲阻抗差異較大,超聲反射率高,缺陷有一定延伸長度,起波速度快,回波前沿陡峭,波峰尖銳,回波后沿斜率很大,當探頭越過裂紋延伸方向移動時,起波迅速,消失也迅速。 |
||
(4)鋼鍛件中的白點--波峰尖銳清晰,常為多頭狀,反射強烈,起波速度快,回波前沿陡峭,回波后沿斜率很大,在移動探頭時回波位置變化迅速,此起彼伏,多處于被檢件例如鋼棒材的中心到1/2半徑范圍內,或者鋼鍛件厚度最大的截面的1/4~3/4中層位置,有成批出現的特點(與爐批號和熱加工批有關)。當白點數量多、面積大或密集分布時,還會導致底波高度顯著降低甚至消失。 |
||
(5)鍛件中的非金屬夾雜物--多為單個反射信號,起波較慢,回波前沿不太陡峭,波峰較圓鈍,回波后沿斜率不太大并且回波占寬較大。 |
||
(6)鈦合金鍛件中的高密度夾雜物(例如鎢、鉬)--多為單個反射信號,回波占寬不太大,但較裂紋類要大些,回波前沿較陡峭,后沿斜率較大,當改變探測頻率和聲束直徑時,其反射當量大小變化不大(如為大晶粒或其他組織反射在這種情況下回波高度將有顯著變化)。 |
||
(7)鑄件或焊縫中的氣孔--起波快但波幅較低,有點狀缺陷的特征。 |
||
(8)焊縫中的未焊透--多為根部未焊透(如V型坡口單面焊時鈍邊未熔合)或中間未焊透(如X型坡口雙面焊時鈍邊未熔合),一般延伸狀況較直,回波規則單一,反射強,從焊縫兩側探傷都容易發現。 |
||
(9)鑄件或焊縫中的夾渣--反射波較紊亂,位置無規律,移動探頭時回波有變化,但波形變化相對較遲緩,反射率較低,起波速度較慢且后沿斜率不太大,回波占寬較大。 |
||
一般在可能的情況下,為了進一步確認缺陷性質,還應采用其他無損檢測手段,例如X射線照相(檢查內部缺陷)、磁粉和滲透檢驗(檢查表面缺陷)來輔助判斷。 |
||
二.根據回波相位識別反射體 |
||
|
||
|
||
三.根據視頻顯示波形的形狀判別缺陷性質 |
||
|
||
這種方法與經驗法判斷含氣體的裂紋類缺陷回波的前沿陡峭、回波占寬較小、回波后沿斜率較大的特點是相應的,但是用這種方法可以更定量地判斷,不過其具體定量值尚需做大量的實驗驗證工作后確定。 |
||
四.缺陷回波的頻譜分析 |
||
缺陷回波的頻譜包絡形狀與缺陷幾何形狀及取向,以及缺陷尺寸與超聲波長的比值密切相關,因此可以通過向缺陷發射寬頻帶(窄脈沖)超聲波并對接收到的回波信號頻譜進行分析從而判斷缺陷種類和性質。在這方面已有不少資料報道,但主要還是以識別反射體的幾何形狀為基礎,例如識別是平面缺陷還是體積缺陷,是傾斜取向還是垂直取向的缺陷,利用不同形狀與取向缺陷的反射與頻率的依從關系,能較好地確定缺陷的種類和性質。 |
||
我們知道,在探傷儀上顯示的是缺陷的合成傳輸函數:F合=F1·F2·F32·F42·F5·F62 |
||
式中:F1-發生器傳輸函數;F2-放大器傳輸函數;F3-探頭傳輸函數;F4-被檢件傳輸函數;F5-缺陷傳輸函數;F6-耦合傳輸函數。其中F3、F4和F6對超聲信號有兩次(往返)影響,故取其平方值。 |
||
在一般情況下,缺陷傳輸函數F5又是下述缺陷各參數的函數ψ:F5=ψ{K·Nb·Sb·Qb·Rb} |
||
式中:K-缺陷坐標(位置);Nb-缺陷性質;Sb-缺陷面積;Qb-缺陷取向;Rb-缺陷內含物(填充物) |
||
在用普通單頻超聲法向工件發射超聲脈沖和接收反射超聲脈沖時,缺陷內含物的脈沖頻率保持不變,因此電路和聲路部分所有傳輸函數都不帶有缺陷信息,成了窄頻濾波器,并由于它們彼此的振幅頻率特性有顯著不同,而使包含在F5中的大部分缺陷信息消失在其他傳輸函數中。 |
||
利用頻譜法可以比普通單頻法大大增加有關缺陷性質和大小的信息量。對于K、Qb和Sb,容易用普通方法確定,困難的是確定Nb和Rb。可以把缺陷反射脈沖的頻譜設為R(x),發射脈沖頻譜為E(t),而缺陷傳輸函數設為h(t),則: |
||
R(x)=E(t)·h(t) |
||
當已知與給定方向有關的函數R(x)后,雖然還不能確定缺陷的全部特征,但已能對缺陷的一般形狀,特別是對缺陷的取向提供有用的資料。因此,可以利用寬頻帶(窄脈沖)探頭,并使發射頻譜盡可能規則,則缺陷回波頻譜將隨缺陷的形狀和取向而變化,從而有助于判斷出缺陷的種類和性質。 |
||
超聲檢測技術對缺陷定性評定的其他方法 |
||
1.超聲C掃描和B掃描 |
||
這是將直通回波以線型方式顯示缺陷的平面投影形狀(C掃描)或缺陷在深度截面上反射面的平直、彎曲,即反射界面的形狀(B掃描),從而幫助判斷缺陷的種類和性質。 |
||
2.超聲全息 |
||
借助全息原理,將缺陷反射的大量信息數據處理成三維空間立體圖像顯示以輔助判斷。 |
||
3.利用電子計算機處理缺陷回波信號 |
||
目前國內外均在研究并試制出電腦化超聲波探傷儀。但是常用的是與頻譜分析結合使用或作為超聲探測程序控制來使用,不過相信很快將有突破性發展。 |
||
|
||
|